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Abstract—One notoriously hard data cleaning problem is,
given a database, how to precisely capture which value is correct
(i.e., proof positive) or wrong (i.e., proof negative). Although
integrity constraints have been widely studied to capture data
errors as violations, the accuracy of data cleaning using integrity
constraints has long been controversial. Overall they deem one
fundamental problem: Given a set of data values that together
forms a violation, there is no evidence of which value is proof
positive or negative. Hence, it is known that integrity constraints
themselves cannot guide dependable data cleaning. In this work,
we introduce an automated method for proof positive and
negative in data cleaning, based on Sherlock rules and reference
tables. Given a tuple and reference tables, Sherlock rules tell
us what attributes are proof positive, what attributes are proof
negative and (possibly) how to update them. We study several
fundamental problems associated with Sherlock rules. We also
present efficient algorithms for cleaning data using Sherlock rules.
We experimentally demonstrate that our techniques can not only
annotate data with proof positive and negative, but also repair
data when enough information is available.

I. INTRODUCTION

Real-life data is often dirty: Up to 30% of an organization’s
data could be dirty [2]. Dirty data is costly: It costs the
U.S. economy $3 trillion+ per year [1]. These highlight the
importance of cleaning data in all businesses.

One notoriously hard problem in data cleaning is that, given
a database, how to precisely capture which value is correct
(i.e., proof positive), which value is wrong (i.e., proof negative)
and (possibly) how to repair it. There has been a remarkable
series of work for capturing data errors as violations via
integrity constraints (ICs) [4], [8], [11], [17], [18], [21], [27]. A
violation is a set of data values that, when put together, violates
some IC, thus considered to be erroneous. We illustrate this line
of work by an example.

Example 1: Consider the database Dy, of Fig. 1 containing
employee records, specified by the following schema:

EMP (name, dept, nation, capital, bornat, officePhn),

where each EMP tuple specifies an employee, identified by
his/her name, department (dept), nationality (nation) with its
capital, the city he/she was born at (bornat), and office phone
number (officePhn). All errors are marked, e.g., to[capital] =
Shanghai is wrong, whose correct value is Beijing.

Assume that a functional dependency (FD) is defined as
¢ : EMP (nation — capital), which states that nation uniquely
determines capital in relation EMP. One can verify that (¢, t2)
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name | dept nation capital bornat | officePhn
t1 ] Beijing ChenYang | 28098001
to Yan DA China | Shanghai | Chengdu | 24038698
ts fan ALT | Chine Beijing Hangzhou | 33668323
Figure 1. Dgyp: An instance of the schema EMP
country | capital | | name  officePhn | mobile
s1 hina Beljing r1 i 28098001 [66700541
82 Japan Tokyo r2 Yan 24038698 [66706563
s3 Chile Santiago r3 fan 27364928 [33668323
Figure 2. Mcap of CAP Figure 3. Mpyn of PHN

violate ¢ since they have the same nation but different capital
values (Beijing for ¢; and Shanghai for t5). O

Example 1 shows that ICs can detect errors, e.g., there
must exist errors in the four values (¢;[nation,capital],
to[nation, capital]). However, it reveals two shortcomings of
IC-based error detection: (i) it cannot do proof positive (e.g.,
ti[nation] is correct) or proof negative (e.g., ta[capital] is
wrong) in detected violations; and (ii) it cannot ensure that
data consistent w.r.t. a set of ICs is correct. For instance, in
Fig. 1, t3 is consistent with any tuple w.rt. ¢, but ¢3 cannot
be marked as correct. Therefore, ICs themselves cannot guide
dependable data cleaning. Consequently, automated constraint-
based repairing algorithms [4], [8], [11], [18], [21], [27] try to
resolve detected violations in a heuristic fashion.

In order to achieve dependable data repairing, users have
been involved and reference tables that contain well curated
data have been employed [23]. We illustrate this line of work
with another example.

Example 2: Consider a reference table Mc,p shown in Fig. 2,
defined over the schema CAP (country, capital). Editing
rules [23] work as follows. Let ¢ : ((nation,country) —
(capital, capital),t, = ()) be an editing rule over the two
relations (EMP, CAP). Rule ¢ states that for any tuple ¢ in
Degyp, if t[nation] is correct and matches s[country] of a tuple
s in Mcap, we can update t[capital] to s[capital]. For instance,
to repair to in Fig. 1, the users need to ensure that ¢z[nation]
is correct. Afterwards, to[country] can be safely matched with
s1[country] in the reference table, so as to update to[capital]
to sy [capital]. For the other tuples similar processes apply. O

Editing rules can ensure dependable data repairing. How-
ever, users have to be involved in repairing each tuple, which
is not cheap and error-prone.

Examples 1 and 2 highlight one important problem: How fo
automatically do proof positive and negative in data cleaning?
This is a hard but important problem to stimulate our creative
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evidence negative positive evidence negative positive evidence | negative  positive

EMP name officePhn | officePhn EMP name officePhn EMP nation capital

PHN name mobile officePhn PHN name mobile cAap  country capital
¥1 P2 ©3

EMP(t3) lan | 33668323 = 27364928 EMP(t3) lan | 33668323 EMP(t1) China Beijing

PHN(r3) _lan | 33668323 | 27364928 PHN(r3) lan | 33668323 cap(s1) China Beijing

(7) Proof positive/negative, correction

Figure 4. Example Sherlock rules

juices, since it not only lights up the way of dependable
data repairing, but also sheds considerable light on other
data cleaning approaches that require well annotated data
e.g., IC discovery [10], [13], [19] and machine learning based
approaches [34]. Sherlock rules proposed by this work are ideal
for this purpose.

Sherlock is not magic; it cannot guess something from
nothing. What it does is to collect evidences from external
sources (i.e., reference tables) so as to make judgement, e.g.,
people often confuse capitals with big/famous cities, office
phone numbers with cell numbers, or zip code with area code.
We illustrate by an example how Sherlock rules work, based
on the availability of related reference tables.

Example 3: Consider the employee table in Fig. 1, the capital
table in Fig. 2, and the phone table in Fig. 3. We next discuss
the three cases depicted in Fig. 4 which make use of three
Sherlock rules ¢1—ps3.

Case (i) Proof positive, proof negative and correction. Rule
1 states that for a tuple ¢ in Dgyp, if its name matches
the name of an r tuple in Mpyy, and t[officePhn] matches
r[mobile], then ¢y validates that t[name] is correct (proof
positive), and t[officePhn] is wrong (proof negative).
Moreover, it will rectify ¢[officePhn] to r[officePhn].

Consider t3 in Dgyp and rs in Mpyy, @1 works as fol-
lows (see Fig. 4 case (i)). Firstly, ¢t3[name] is matched with
r3[name], and ts[officePhn] with r3[mobile]. It then detects
that ¢3 is about lan, but someone messed up his office number
with his mobile number. Consequently, ¢3[name] is marked as
correct and t3[officePhn] as wrong. Since the office number of
lan is available in r3[officePhn], ¢; will update ¢3[officePhn]
to r3[officePhn], which is 27364928.

Case (ii) Proof positive and proof negative. Often times, not
all evidences are available. Assume that the column officePhn
is missing in PHN, ie., we consider a revised schema PHN’
(name, mobile). Rule 5 states that given a tuple ¢ in Dgyp,
if its name matches the name of a tuple r in Mpyy, and
t[officePhn] matches r[mobile], then o validates that t[name]
is correct and ¢[officePhn] is wrong.

Again, consider t3 in Dgyp and r3 in Mpyyr, @ works
similar to ¢; (see Fig. 4 case (iz)), which validates that
ts[name] is correct and ¢3[officePhn] is wrong. However, due
to the missing column officePhn in PHN’, ¢ cannot update
t3[officePhn].

Case (iii) Proof positive. Rule 3 states that for a tuple ¢ in
Deyp, if t[country, capital] matches s[country, capital] of an s
tuple in Mcap, it will mark ¢[country, capital] as correct.

(i1) Proof positive/negative
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(#i1) Proof positive

Consider ¢ in Dgyp and s; in Mcap. Since both country
(i.e., China) and capital (i.e.,, Beijing) match, 3 will mark
t1[country, capital] as correct. O

Remark: (1) Sherlock rules differ from ICs in two aspects.
(a) Sherlock rules can precisely capture which value is correct
or wrong, but ICs cannot (see Example 1). (b) Sherlock
rules can guide fine grained dependable data repairing by
precisely changing data values (see Example 3 case (4)). (2)
Sherlock rules differ from other data cleaning rules e.g., editing
rules [23] and fixing rules [33] in that instead of only fixing
data errors, they are also able to annotate data, even if some
information is missing (see Example 3 cases (¢, 4i¢)). This
feature is appealing, since Sherlock rules can be used as a
pre-processing step for other applications [10], [13], [19], [22],
[34] that require well-annotated data as input.

Contributions. We propose Sherlock rules, a novel class of
rules for proof positive and negative in data cleaning, with the
following notable contributions.

(1) We formally define Sherlock rules and their semantics
(Section III). Given a tuple ¢ and a reference table, Sherlock
rules tell us that which values are correct, which values are
wrong and (possibly) how to repair them.

(2) We study fundamental problems of Sherlock rules (Sec-
tion IV). Specifically, given a set ¥ of Sherlock rules, we
determine whether these rules have conflicts. We show that
this problem is coNP-complete. We also study the problem of
whether some other Sherlock rules are implied by 3, which is
also proved to be a coNP-complete problem.

(3) We propose two repairing algorithms for a given set 3 of
Sherlock rules (Section V). The first algorithm is chase-based.
The second one is an optimized version of the chased-based
algorithm that exploits similarity indices and other auxiliary
data structures to improve the efficiency.

(4) We experimentally verify the effectiveness and scalability
of the proposed algorithms (Section VI). We find that Sherlock
rules can annotate and repair data with high accuracy and good
scalability.

Organization: Section II presents related work. Section III
introduces Sherlock rules. Section IV studies fundamental
problems associated with Sherlock rules. Section V describes
repairing algorithms that employ Sherlock rules. Section VI
reports experimental findings, followed by concluding remarks
in Section VIIL.



II. RELATED WORK

In recent years, there has been an increasing amount of
literature on using ICs in data cleaning (e.g., [4], [8], [11], [18],
[21], [27]; see [20], [31] for surveys). They have been revised
to better capture data errors as violations of these ICs (e.g.,
by adding conditions CFDs [18] and CINDs [8]). As remarked
earlier, ICs cannot tell which values in a violation are correct
or wrong, thus fall short of guiding dependable data repairing.

Closer to this work are editing rules [23] and fixing
rules [33]. Editing rules [23] are introduced to repair data
that is guaranteed correct. However, editing rules require users
to examine every tuple, which is expensive. Sherlock rules
differ from editing rules in that they automatically annotate
data as proof positive or negative, and rectify errors when
enough evidences are present. Fixing rules [33] have been
recently proposed for automatic and dependable data repairing.
Sherlock rules are more general than fixing rules in that (1)
Sherlock rules use schema level matching between dirty data
and reference tables instead of encoding instances in rules
as fixing rules (and constant CFDs) do; (2) Sherlock rules
use domain-specific similarity matching instead of exact string
matching employed in fixing rules; and (3) Sherlock rules are
able to annotate data when insufficient evidences are given.

Many data repairing algorithms have been proposed [6],
[71, [12], [14], [15], [22]-[25], [28], [35]. Heuristic methods
are developed in [5], [7], [14], [15], [24], based on FDs [5],
[27], [32], FDs and INDs [7], CFDs [18], CFDs and MDs [22]
and denial constraints [12]. Some works employ confidence
values placed by users to guide a repairing process [7], [14],
[22] or use master data [23]. Statistical inference is studied
in [28] to derive missing values, and in [6] to find possible
repairs. To ensure the accuracy of generated repairs, [23], [28],
[35] require to consult users. In contrast to these prior arts: (1)
Sherlock rules are more conservative in repairing data, which
target determinism and dependability, instead of computing
a consistent database; (2) Sherlock rules neither consult the
users, nor assume the confidence values placed by the users.
Indeed, they can be treated as a complementary technique to
heuristic methods i.e., one may compute dependable repairs
or annotate data first and then use heuristic solutions to find a
consistent database.

There has also been work on data transformation [29].
ETL tools (see [26] for a survey) provide sophisticated data
transformation methods, which can be employed to merge and
repair data. Some recent work has been studied for syntactic
transformations of strings [3]. We shall discuss later that they
can be expressed as special cases of Sherlock rules.

III. SHERLOCK RULES

In this section, we first give the formal definition of
Sherlock rules (Section III-A). We then describe the repairing
semantics (Section III-B) for applying a set of Sherlock rules.

A. Definition

Let D be a table over schema R, and M a reference table
with schema R,,. We use A € R to denote that A is an
attribute of R. Note that the relation schema R is often distinct
from R,,. Moreover, we assume that the reference table R,,
is correct but possibly incomplete.
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Syntax. A Sherlock rule (sR) ¢ defined on schemas (R, R,,)
is formalized as ¢ : ((X, X,n), (B, Br, B#), =) where:

e X and X,, are lists of distinct attributes in schemas
R and R, respectively, where |X| = |X,,];

e  Bis an attribute such that B € R\ X, and B;,, B# are
two distinct attributes in R, \ X,; and

e & is a vector of similarity operators over comparable
attributes, (A, A,,), (B, B) and (B, B#,), where A €
X, and A, is the corresponding attribute in X,,.

Intuitively, rule ¢ says that for a pair of tuples ¢ in D
and t,, in M, if both (¢t[X],t,,[ X)) and (¢[B],t,,[Br)) are
similar w.r.t. some similarity metrics, ¢ validates that ¢[X] is
correct, ¢t[B] is wrong, and moreover, the correct value of ¢[B]
is ty [B#)-

Example 4: Consider again the employee table in Fig. 1, the
capital table in Fig. 2 and the phone table in Fig. 3. The three
sRs in Example 3 can be formally expressed as follows — where
1 and 9 are defined on (EMP, PHN), and 3 is defined on
(EMP, CAP):

®1: ((name, name), (officePhn, mobile, officePhn), (=, =, =))

©2: ((name, name), (officePhn, mobile, 1), (=, =, %))

®3: ((nation, country), (capital, L, capital), (=,%,=))

where “1” indicates that a field is missing, and “7” that the
two corresponding attributes are not comparable, e.g., when
some attribute is missing from reference tables. O

Match: Given an sR ¢ defined on two relations (R, R,,), a
tuple ¢ from D and tuple ¢, from M, we say that ¢ and ¢,
match w.rt. ¢, denoted by t ~, t,,, if for each attribute A €
X, let A,, be its related attribute in X,,,, then t[A] =; t,[Amm],
and moreover, (¢) if B is present, t[{B] ~; t,,[Bx] holds,
or (i1) if By is absent but B4 is present, t[B] =~ t,[B#]
holds. Here, ¢, j, k are indices for the corresponding similarity
operators in . Intuitively, ¢ and ¢,, match w.rt. ¢ when ¢
can do proof positive/negative or correct values in ¢ based on
the evidences collected from ¢,,.

Example 5: Consider Example 4 and Fig. 4. We have that ¢3
in Dgyp and 73 in Mpyy match under ¢ (i.e., t3 ~,, 73),

since ts[name] = rs[name] and t¢3[officePhn] = r3[mobile].
Similarly, one can verify that ¢3 ~, 73, and t; ~, s1, where
s; is a tuple in Fig. 2 and r; a tuple in Fig. 3. O

Semantics. We say that a Sherlock rule ¢ applies to a tuple

t, denoted by ¢ ng t/, if a reference tuple ¢, exists such that
(1) ¢ and t,,, match w.rt. ¢ (i.e., t ~, t,,), and (2) t’ is the
updated version of ¢. That is, when ¢ agrees with a reference
tuple t,, on some set of attributes, we are able to derive an
updated and annotated version ¢’ of ¢.

TR

We use the symbol “+” (resp. ) to annotate a value
as positive (resp. negative). Otherwise, when a value is not
annotated, we call it a free value. To ensure that changes and
annotations make sense, the values that have been annotated
as positive are considered as bounded, i.e., they should remain
unchanged in the following processes.

Example 6: Consider again case () in Fig. 4. Under ; we
have that t3[name] agrees with r3[name], and t3[officePhn]
is the same as r3[mobile]. Hence, we know that ¢3[name]



(Xim # 1) A (Bin # 1) A (Bii £ 1) A (B & 20S(t)) A (X N NEG(D) = 1) A (UX] = tmlXm]) A (1B] % tm[Ba])
(t[X, B] = tm[Xm, B#]) A (POS(1) := POS(t) U X U {B}) A (NEG(L) = NEG(t) \ {B})
(Xm # L)AN(Bm # L) A (B = L) A (B € Pos(t)) A (X NNEG(t) = L) A (¢X] & tm[Xm]) A (¢[B] = tm[Bx]) @)

(t[X] = tm[Xm]) A (POS(t) := POS(t) U X) A (NEG(t) := NEG(t) U {B})

(Xm # L) A (B # L) A (B = L) A (B & Pos(t)) A (B € NEG(t)) A (X NNEG(E) = L) A (HX] % tm[Xm]) A (H[B] = tm[Bi])

(t[X, B] := tm[Xm, B]) A (POS(t) := Pos(t) UX U {B})

(X # L) A (B # L) A (B = L) A (B ¢ POS()) A (X C POS() A (HX] & ton[Xon]) A (t[B] % £ [Bi])

®3)

(t[B] := tm[B#]) A (POS(t) := POS(t) U {B}) A (NEG(Z) := NEG(t) \ {B})

(Xm = L) A (B # L) A (B # L) A (B & Pos(t)) A ({B] ~ tm[B3])

(4)

(t[B] := tm[Bi#]) A (POS(t) := Pos(t) U {B})

Figure 5. Transformation rules

(i.e., lan) is correct, but the mobile phone has been inserted
instead of the office phone, hence ¢3[officePhn] is wrong. By
applying 1 to t3, we obtain an updated tuple t5 with officePhn
being corrected from 33668323 to 27364928. As a result,
ts[name, officePhn] is corrected and positively annotated as
ts(lan™,27364928).

For case (¢%) in Fig. 4, rule 5 cannot update t3. However,
it will annotate ¢3[name, officePhn] as ¢3(lan™, 336683237).
Moreover, for case (ii¢) in Fig. 4, 3 will annotate values of
t1[nation, capital] as #1(China™, Beijing™). O

Given a rule ¢ : (X, X,), (B, Bm, B#), =), for conve-
nience, we denote by A, an attribute in ¢, where A is in
X, X,, or one of B, B;, or Bj.

B. Applying Multiple Sherlock Rules

When applying a Sherlock rule to a tuple, the tuple might
have been repaired and annotated by other sRs. Hence, we shall
discuss the semantics of applying multiple Sherlock rules.

Annotations. Given a tuple ¢ over relation R, we define three
sets of annotated attributes.

e POS(t): attributes identified to be correct;

e NEG(¢): attributes identified to be wrong; and

e  FREE(t): attributes that are free, i.e., not marked.

Intuitively, a value has to be annotated as either positive
(i.e., in POS(t)), or negative (i.e., in NEG(t)), or free (i.e., in
FREE(t)). At any time, POS(t) N NEG(t) = 0, ie., a value
cannot be both positive and negative.

Initially, before applying Sherlock rules to a tuple ¢, all
attributes of ¢ are free. After applying a Sherlock rule to ¢
resulting in an annotated and (possibly) updated tuple t, a
free value can remain free, or be annotated either as positive,
or negative; a negative value can remain negative or be repaired
and thus annotated as positive; a positive value can only remain
positive. Hence, the application of Sherlock rules gradually
identifies positive/negative values from free values, and update
negative values when their correct values are known. Along
with applying Sherlock rules, the size of unannotated attributes
(i.e., FREE(t)) decreases monotonically, while the size of
POS(t) increases monotonically, i.e., |FREE(t')| < |FREE(¢)]
and |POS(t)| > |pOs(t)].

Transformation rules. Sherlock rules are quite flexible. Based
on whether X,,,, B5; or B;; are present or not, and on the types
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Cases

Proof negative  Repair
(1) Xom, B, Bt
(2) Xm, B,

(3) Xm, Bk
4) X, B,
(5) Bam, B

<< << <8

i
v

Figure 6. Sherlock rules in different cases

of annotations that have been marked on a tuple ¢, we have
five transformation rules that devise a compositional scheme
for Sherlock rules. This defines the operational semantics of
rule applications. The five transformation rules are depicted in
Fig. 5. They are explained below.

(1) X.», B and B, are given. If B is not yet proof positive,
no attribute in X is proof negative, and, in addition, ¢[X]| ~
tm[Xm] and t[B] = t,,[Bx), then, as a consequence, t[X U
{B}] will be updated and X, B be annotated as positive.

(2) This case is similar to (1), except that B, is absent. As
a consequence, t[X] (resp. t[B]) will be annotated as positive
(resp. negative).

(3) Similar to (1), but this time By is absent and ¢[B] ~
tm[B#]. Both X and B are annotated as positive.

(4) As (3) but ¢[B] is not similar to ¢,,[B;] and X has already
been annotated as positive. Because of the later, we can then
safely update t[B] to t,,[B:#] and annotate B as positive.

(5) Only B;, and B}, are present. This rule is similar to an ETL
dictionary look up, so that ¢[B] can be updated to ¢,,[B] and
annotated as positive if ¢[B] matches t,,[Bx).

Example 7: Consider rule ¢; of Example 4. The first trans-
formation rule can be applied in order to obtain the behaviour
explained in Example 3 case (7). If, instead, we apply the
second transformation rule, e.g., B is missing in the reference
table, we get case (i¢) of Example 3. Similarly, transformation
rules 3 — 5 can be used over ¢; to implement different rule
semantics. a

Discussion. Figure 6 summarizes the five transformation rules
by showing their features. Transformation rule (1) has all the
information available and therefore is able to do both proof
positive/negative and rectify the wrong values, which can be
treated as a generalization of fixing rules [33]. Case (2) is
used to identify errors, and case (3) is able to mark data as
correct. Interestingly, from this perspective rules (4) and (5)



name bornCity | officePhn mobile |
r1 ] henyang | 28098001 [66700541
ro | Yan Chengdu | 24038698 [66706563
r3 lan Hangzhou | 27364928 33668323

Figure 7. My of REG

are identical. Semantically, however, they are quite different:
rule (4) is an automatic and similarity-based implementation
of editing rules [23], while (5) is an ETL dictionary look up,
for example, to normalize strings.

Fixing Transition. Given a tuple t¢,, in reference table M,
a transformation rule ¢, and a (possibly annotated) tuple ¢,
a fixing transition is the process of selecting and executing
one transformation rule, resulting in a modified ¢'. For ease

. . stm .
of understanding, we also use the notation ¢ 2 ¢ for fixing
transition, where both ¢ and ' are annotated tuples.

Example 8: Consider ¢; in Fig. 1 and the reference table Mygg
in Fig. 7, generated from Mpyy of Fig. 3 by adding a column
containing the city in which each person was born. We have
the following two rules defined over (EMP, REG):

©4: ((name, name), (officePhn, L, officePhn), (=,%,=))
©5: ((name, name), (bornat, L, borncity), (=, %, =))

At first, only ¢4 can be applied to t; using r; in Fig. 7,
under the semantics of transformation rule (3). Note that, at
this point, 5 cannot be applied using 7 since ¢;[bornat] =
Chenyang, which does not equal to r1[bornCity] = Shenyang.
By applying ¢4 and 7, the first fixing transition will annotate
t1[name, officePhn] as positive, as depicted below.

t1: (Si, DA, China, Beijing, ChenYang, 28098001)

(1st fixing transition with @4 and r1)
ti: (Sit , DA, China, Beijing, ChenYang, 28098001% )

(2nd fixing transition with ps and r1)
t{: (Sit, DA, China, Beijing, ShenYang™ ,28098001")

Now, since t1[name] has been annotated as positive, rule s
can be applied under the semantics of transformation rule (4).
This indeed simulates editing rules [23], and ¢; [bornat] can be
safely updated from Chenyang to Shenyang and annotated as
positive, as depicted for the second fixing transition above. O

Fixing Run. Let ¢ be a tuple and ¥ a set of Sherlock rules.
A fixing run is a sequence of fixing transitions on ¢, until a
fixpoint is reached, i.e., no more rules can be applied.

In other words, given tuple ¢ and rules X, a fixing run is a

. . 0 (V’vtm)o 1 1 (‘Pvtm)"71
set of fixing transitions as t© —— ¢+, --- ;"7 — ",

where t* denotes the tuple after the i-th fixing transition, ¢’
and t"t! (i € [0,n — 1]) are different i.e., they have different
values or different annotations, and ¢" is a fixpoint, which for
simplicity we denote as t*.

Example 9: Consider ¥ = {p4,¢5} of Example 8. The
running example shown in Example 8 is a fixing run for tuple
t1 w.rt. 3, since no more rule can be further applied. O
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notation description

((X,Xm), (B, Bm, B#),=<) | a Sherlock rule
A, attribute A in rule ¢
t~g tm t and t,, match w.rt. ¢
t oy (fixing transition) applying ¢ and t,, to ¢
o (ptm)° ) (pstm)” 1 " . .

t ——t,---, — t"| a sequence of fixing transitions
t* the fixpoint of a fixing transition
Rf T fixing repairs of ¢ w.r.t. M and X

Figure 8. Summary of notations

Fixing Repair. Given a possibly dirty tuple ¢, a reference table
M, and a set of Sherlock rules X, many different fixing runs
can be used to model the repairing of ¢. Intuitively, this is due
to the fact that different updates can occur based on which rule
is non-deterministically selected in each transition. To express
this, we write Riv L2 1o denote the fixing repairs for t: the
set of non-empty runs that models all the possible evolutions
of t driven by M and ¥. A fixing repair exactly models the
repairing semantics of M and ¥ on t. In the following we will
in general write R to denote a fixing repair, when ¢, M and X
are easily understandable from the context. We will show later
that every run in R is terminating (Section IV-A), and that they
all converge to a unique final repaired instance (Section I'V-C)
— ie., for every pair of distinct runs p,p’ € R, t* = t'* — if
the set of rules X is consistent (Section IV-B).

We summarize the notations used in this paper in Fig. 8.

IV. FUNDAMENTAL PROBLEMS

In the previous section we have briefly observed that some
specific fundamental problems associated with Sherlock rules
must be addressed. In this section we shall formally define
such problems and study their complexity. Detailed proofs are
omitted due to space constraints.

A. Termination

As already discussed in Section III-B, the termination
problem asks if the repairing process leads to a fixpoint. Note
that in every fixing transition of a tuple ¢, we have that (1)
the set of annotated positive attributes increases monotonically,
(2) the set of free attributes decreases monotonically, and (3)
a variable can only be changed from free to negative or pos-
itive, or from negative to positive, but not vice-versa. Hence,
termination is assured after a number of fixing transitions
polynomial in the size of the relation schema.

B. Consistency

The consistency of Sherlock rules mainly deals with en-
suring that the application of a set of rules in different orders
will always have the same result.

Consistency problem. Let X be a set of Sherlock rules and
M a reference table. Y is said to be consistent w.r.t. M, if
given any tuple ¢, all the fixing runs via > and M terminate
in the same fixpoint t*, i.e., the repair is unique.

For analyzing the consistency of Sherlock rules, we intro-
duce conflicting rules below.

Conflicting rules. Let ¢ and ¢’ be two Sherlock rules in X
such that (i) B¥ N (X¥¢ U B¥) # 0, and (ii) two distinct



fixing runs p, p’ in the repair R exist such that p and p’ agree

. .. c(putm)t . .
up to the i* transition t* =% #*1 and in the successive

transition ¢ and ¢’ can be applied concurrently. We say that ¢
and ' are conflicting if in the i + 1*" transition, ¢ is applied
in p, ¢ is applied in p/, and then t* # t'*.

Intuitively, two rules are conflicting if they try to repair
or annotate the same record differently. In this way divergent
final results will exist based on the order in which rules are
applied first.

Proposition 1: Let 3 be a set of Sherlock rules. 3. is consistent
iff no pair of distinct rules @, @' € ¥ exists such that ¢ and
¢’ are conflicting. O

Proof sketch: For the only-if direction, assume that no pair of
conflicting rules ¢, ¢’ € ¥ exists. In addition, by contradiction,
assume that Y is not consistent, i.e., two distinct runs p, p’ exist
in R such that the respective final tuples t*, t'* are different.
One can show that such two assumptions are in contradiction
since necessarily a unique final instance occurs when no pair
of conflicting rules exists in 2.

Let us consider now the if direction. Let 3 be a consistent
set of rules. Assume by contradiction that a pair of conflicting
rules ¢, ¢’ exists in ¥. One can show that two distinct final
tuples are the result of the repair R. However this is a
contradiction, since we have initially assumed that every run
in R bring to a unique final outcome. g

Consistency has been studied over different types of rules.
For instance, it is known that any set of MDs is consistent
[22], while checking consistency for a set of CFDs and editing
rules is respectively NP- and coNP-complete [18], [23] in the
general case. The following result shows that with Sherlock
rules we are on the same line with editing rules.

Theorem 2: The consistency problem for Sherlock rules is
coNP-complete, even when the reference table is given. O

Proof sketch: A PTIME algorithm exists to check if each
pair of rules ¢, ¢’ € ¥ are not conflicting over the instance M.
A procedure then can be built showing that deciding whether
@ and ¢’ are conflicting is NP - and therefore detecting
consistency is coNP. For the hardness part, the complement
problem can be reduced to the 3SAT problem which is known
to be NP-complete. O

If instead we consider the special case in which D is
available, the consistency problem becomes PTIME.

Corollary 3: Given a possibly dirty instance D and reference
table M, the consistency problem for a set 3 of Sherlock rules
wrt. D is PTIME. O

Proof sketch: It is enough to check, for each transition ¢, that
the set of applicable rules does not contain application of two
conflicting rules. Finally, if a pair of conflicting applications
exists, by Theorem 2 we know that a procedure exists by
which we can check in PTIME if they are actually inconsistent
against the reference instance M. O
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Remark. Given that M is correct, checking whether a set ¥ of
rules is consistent is infeasible in practice based on Theorem 2.
In fact, however, it is rational to check whether putting M
and X together makes sense relative to a possible dirty data
D, which is PTIME from Corollary 3. In our experimental
study in Section VI, we use at run-time the PTIME algorithm
to check whether M and X are consistent w.rt. a given D.
If not, we will manually check and revise X to ensure their
consistency.

C. Determinism

The determinism problem is whether a unique final tuple
t* is obtainable for a given fixing repair R. A unique final
result is obviously always obtainable given a consistent X.
In addition, under this assumption, in every transition all the
applications can be concurrently applied since we are assured
that no inconsistent result will be obtained.

D. Implication

Given a set X of consistent Sherlock rules, and another
Sherlock rule % that is not in ¥, we say that v is implied by
Y, denoted by ¥ |= 4, if (i) ¥ U {¢} is consistent; and (44)
whichever dirty tuple t € D and reference table M, every runs
in Rib > and Riw b agree on the final tuple ¢*. Condition
(i) says that ¥ and 1) comply with each other. Condition (i7)
ensures that the outcomes of applying 3 or X U {¢} are the
same, which indicates that 1) is redundant relative to X.

Implication problem. The implication problem is: given a set
> of consistent Sherlock rules, and another rule 1), determine
whether ¥ implies ¢ for any dirty tuple and reference table
M. We first analyze the general case.

Theorem 4: The implication problem for a set of consistent
Sherlock rules XU {1} is coNP-complete, even if the reference
table M is given. O

Proof sketch: The implication problem can be computed by
first checking the consistency of XU{«} — which from Section
IV-B we know is coNP-complete — and then by checking
whether the two repairs Riw > and wa EUtY) bring to the
same final tuple t*, whichever input record ¢t € D is given.
This latter is coNP, and can be proved by showing that its
complement problem is in NP. For the demonstration that
the problem is actually coNP-complete, one can use with few
changes the technique employed in Theorem 2, i.e., reduction
to the 3SAT problem. O

Although in its general case checking implication is coNP,
in the special case in which both D and M are available, we
are able to compute implication in PTIME.

Corollary 5: The implication problem for a set of generalized
fixing rules XU {¢} is PTIME when D and M are fixed. O

Proof sketch: From Corollary 3 we already know that
checking consistency of XU {«} is PTIME when both D and
M are given. From Sections IV-A and IV-C we already know
that every repair over annotated consistent rules is terminating



Algorithm 1 Optimized Repairing Algorithm

Algorithm 2 getCandidateApplications (Optimized)

Input: A set of consistent rules 3; A reference table M;
A dirty tuple .
Output: A cleaned and annotated version of .
1: initialize(S, M);
2:7:=%
3: o :=getCandidateApplications(Z, S, t)
4: while o # () do
for each t{ € o do
for each ¢ € 7 do
if B® € 1.get MatchingAttributes() then
IT:=T\v¢
repair(t, a);
« :=getCandidateApplications(Z, S, t);

@Y

—_

and deterministic. It is enough then to evaluate if two arbitrary
runs, respectively belonging to R? T2 and wa ,Eu{w}’ both
terminate with the same final state ¢*. From Section IV-C we
know that this computation is PTIME. O

V. REPAIRING ALGORITHMS WITH SHERLOCK RULES

After studying the fundamental problems of Sherlock rules,
especially the remark in Section IV-B about how we get
consistent Sherlock rules in practice, we are now ready to
discuss data repairing using a set of consistent Sherlock rules
for a tuple t. We first present a simple algorithm (Section V-A)
w.r.t. the repairing semantics (Section III-B). We then describe
an optimized algorithm by using various indices to speed-up
the repairing process (Section V-B).

A. Naive Repairing

The naive algorithm for repairing one tuple works as
follows: Firstly, a set of candidate applications is computed.
Afterwards, each application is applied over the dirty tuple,
following the semantics of Fig. 5. To get the set of candidate
applications «, we used a slightly revisited form of the well-
known chase-based algorithm: for each input dirty tuple ¢,
we select the rules and the reference tuples matching with it.
Before actually adding each application to the candidate set,
we run a consolidation routine checking if in the candidate
set «, another application already exists, and, in case, just
the single application with the highest similarity is added to
a. This is necessary since similarity operators are used for
the matching, and, as a consequence, multiple reference tuples
can exist for the same pair t, ¢, and the best one (w.r.t. the
similarity distance between the applications and the dirty tuple)
must be researched.

Correctness and complexity: The naive algorithm just ex-
plained is a tuple-by-tuple straightforward implementation of
the repairing semantics R described in Section III-B.

For the complexity analysis, the tuple-based cost of finding
the candidate applications is O(|X|x |M|). Since the complex-
ity of the outer loop is O(|R|) (the number of transitions is
bounded by the size of the schema, cf Section IV-A), the total
repairing cost for a tuple using the naive implementation is
then O(|R| x |X| x |M]), where |R| and || are typically
small in practice.
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Input: A set of similarity indices S over M; An inverted index Z;
A dirty tuple .
Output: A set o of rules applications
Ia:=10
2: for each p € 7 do
3 A< p.getMatchingAttributes()

4 T :=0

5: for each A € A do

6: Tm € S(At[A],=Ra)

7: if ' = () then

8: I': =T,

9: else

10: ' =I'nTn

11: for each ¢, € I" do

12: t{ = a.consolidate(t, tm, ©);
13: a <t

B. Fast Repairing

In order to get a faster repairing process, in this section we
will show how we are able to reduce the (|X| x |M|) quantity
by using both a proper data structure to keep track of relevant
rules, and similarity indices on reference records.

Similarity indices: To reduce |M]|, we use a set of similarity
indices as preferred access methods to M. We currently sup-
port three different similarity indices and different similarity
measures: BK-tree [9] which can be parametrized by every
string similarity distance defining a metric space (e.g., edit
distance); FastSS [30] that employs an algorithm based on
deletions to model the edit distance; and an n-gram-based
index which can use edit distance as well as token-based
similarity measures such as cosine similarity (see Section
VI-B3 for a comparison over the performances of the indices).
For each attribute in M a proper index is built, based on the
similarity operators encoded into the rules by the user. The
final result returned by an access query to the reference table
M is the set intersection of the records returned by every single
attribute index access.

Inverted index: In order to lower the impact of |X|, we take
track of all the applicable rules for each dirty tuple, i.e., the
rules for which B has not yet been positively bounded. In
order to accomplish this, a hash map is maintained. For each
dirty tuple, we store all the applicable rules. Initially, for each
tuple all the rules can be applied. However, as a tuple is
progressively updated/annotated, all the rules resulting with
the B attribute being positively bounded are removed from
the applicable set. In this way, intuitively, in the best case in
which a tuple can be completely covered, the set of applicable
rules will eventually be empty.

Algorithm: The new optimized repairing procedure is depicted
in Algorithm 1. The algorithm works as in the naive imple-
mentation, except for the set Z, and the initialization of the
similarity indices S (line 1). Z maintains the set of rules
applicable to it (i.e., rules for which the B attribute is not
already bounded as positive), and is passed to the function
getCandidateApplications. 7 is initially filled with all the rules
in X (line 3), and is updated every time a new set of candidate
repairs is computed (lines 6-9). To achieve this, for every
candidate application — denoted by t¢; in the algorithm —



we remove from Z all the rules whose B attribute will be
positively bounded by the application once implemented.

Algorithm 2 describes the gerCandidateApplications
method. Here the reference table is accessed through a set
of similarity indices S, one for each attribute in R,,. For
each dirty tuple, we have that 7 is accessed, and all the
applicable rules retrieved (line 2). For each of such rules, first
the relevant attributes used for the matching (as described in
Section III) are fetched (line 3). For every relevant attribute,
the index is queried using the dirty tuple value ¢[A], and all the
similar reference records 7,,, are retrieved (lines 5-6). In each
iteration, the intersection among all the similar records 7, for
different attributes is computed (lines 7-10). At the end, only
the reference tuples similar to ¢[A] exist in . These tuples are
then used to return proper (consolidated) applications (lines
11-13).

Correctness and complexity: The correctness of the opti-
mized algorithm follows from the correctness of the naive im-
plementation. The former, in fact, is just a revisited version of
the latter where proper data structures are employed to speed-
up the run-time performance. The complexity of the optimized
version of the single tuple repair is now O(|X| x com(S)),
where with com(S) we denote the average complexity of
accessing the similarity indices (e.g., the complexity of the BK-
tree index is O(log(m))). Note that in this case, the quantity
|¥| is in average lower than in the naive implementation
because of the 7 data structure.

Further optimizations: In order to obtain some increases in
the run-time performance, we add to our optimized algorithm
a couple of supplementary extensions.

Caching similarity index accesses. Since accessing similarity
indices can be expensive (Section VI-B3), we have conceived
a set of hash maps acting as caches, so that index accesses
can be shared among different rules. For instance, given a
dirty tuple ¢, two applicable rules may share part of the X,,
attributes. This means that some unnecessary computation is
performed in line 6 of Algorithm 2 when the same index is
accessed multiple times for the same tuple and the same set
of attributes.

A similar behaviour exists for the intersection part of lines
7-10 of Algorithm 2. If over the same dirty tuple two rules
share two or more attributes, we can not only avoid the index
accesses for the second rule, but also skip the intersection part.
This brings performance improvement especially in the cases
in which many similar values exist in the reference table for
certain pairs of values.

Rule pruning using dependency counting. The inverted index
7 is updated every time a rule becomes not applicable to a
dirty tuple because its B attribute has been positively bounded.
In certain specific cases, however, we can do some aggressive
pruning of a rule, even if its B attribute has not been bounded.
The following example illustrates the intuition behind this
optimization.

Example 10: Consider rules 1, ¢3, @5 of Examples 4-8, dirty
tuple t3 of Fig. 1, and reference tables Mcap, Mygg. Assume
that first we want to apply 3. Since in Mc,p we do not
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(a) Rule dependencies

ty «—— {(¢1, 1), (§s, 1), (95, 0)}  iter. 1
ty «——— (&b, (95, 0), (o0} iter. 2
5 «—— {(Pnb, (G50}, P9y}  iter. 3

(b) Rule pruning

Figure 9. Attribute-rate precision and recall of the annotations

have any entry for the value ¢3(Chine), 3 cannot be applied.
Similarly for 5. However, ¢; can be applied. At the second
transition then, as we have seen in Example 8, (5 can be
applied, while 3 still cannot. In the third transition, again,
3 cannot be applied. Note that in every transition the system
tries to apply s, although no change is manifested in the fields
covered by 3 by rules ¢1, 5. Intuitively, starting from the
second transition, 3 can be removed from the set of applicable
rules of ¢3 since: (7) it is not applicable in the first place, (1)
neither ¢; nor @5 will change any value in ¢3 which can make
3 applicable. |

We make concrete the intuition behind the above example
by adding, for each rule ¢ belonging to the inverted index of a
tuple, a counter maintaining the number of rules ¢ depends on,
i.e., the number of rules which, if applied, potentially can make
¢ applicable. Every time a rule is deleted from the inverted
index, the counter of the remaining rules is decreased if they
depend on the removed rule. Once the counter reaches zero,
the rule becomes a candidate that is to be removed. In the
successive transition, if the rule ¢ is still not applicable, it
will then be removed.

Example 11: Figure 9 depicts the situation described in the
previous example. The dependency graph is represented in
Fig. 9(a). Here (3 is not connected with other rules since
it does not depend on 1, 5. Figure 9(b) represents how the
rules are pruned during the iterative repairing process. Initially
all the rules can be used, although 3 is marked as red since
its dependency count is zero, and hence, if not applicable, it
can be pruned starting from the successive iteration. Rule ¢4
is then applied to 3 giving ¢4 as the result. ;1 and 3 are then
dropped from the set of applicable rules. Finally we can apply
5. and at the second iteration we reach the final version 3
since no more rule can be applied. |

VI. EXPERIMENTAL STUDY

In this section we describe an evaluation over how Sherlock
rules can be used to deterministically and accurately clean
a dirty database. The aim of our experiments is to provide
insights on (i) the accuracy of the repairing algorithm; (%)
the accuracy of the annotations over the instance output of the
repairing process; and (7i7) the efficiency of the implementa-
tion, considering that different similarity indices, with different
performances, can be adopted.

A. Experiment Setting

Datasets: We used both real-life and synthetic data.

(1) SYN simulates a staff directory of a company. The schema
for this dataset is simple and is composed by the following
attributes: Office Location, Employee First Name, Employee



Last Name, Office Phone Number, Mobile Phone Number and
Email. We generated 100k records for measuring the accuracy
of our approach. This dataset has been also used for assessing
the scalability of the implementation. For this later study we
have generated datasets of different numbers of tuples (100,
1000, 10000, and 100000).

(2) The TAX dataset was taken from the city of Trenton
Certified Tax List!. Such dataset contains 27k tuples over the
following list of attributes: Block, Lot, Qual, Class, Location,
Owner Name, Owner Street, Owner City State, Owner Zip,
Zoning, Year, Land Dimensions, Description, Additional Lots,
Land Value, Improved Value and Total Value.

Data corruption. For generating dirty datasets, we treated the
original datasets as the ground truth. Dirty data was generated
by adding noise only to the attributes related with some
functional dependencies, possibly spanning the full schema of
the datasets. We controlled the injection of noise by selecting a
noise rate, from 10% to 40%, with steps of 10%. For example,
a noise rate of 30% means that at most one third of the
attributes touched by some FD is corrupted. We limited the
noise rate at 40% since, above this threshold, the original
semantics of the record could be lost. Introduced noise has
three types: typos, errors from the active domain (a value in
a tuple is substituted with a different one belonging to the
active domain of the attribute), and semantic errors (a value
in a tuple is substituted with one belonging to a semantically
related attribute). We treat semantic errors independently from
the former two, i.e., we use one parameter for defining the ratio
of semantic errors, and one different parameter to specify the
ratio of typos and domain errors. In the same tuple different
types of errors can exist (e.g., one value contain a typo, while
another value has a semantic error), although a value can be
corrupted just by one single type of error (e.g., if a field already
contains a semantic error, we cannot also add a typo).

Rule generation. Since Sherlock rules are at the schema level,
just a small number of rules is required. To give an idea of
the order of magnitude, for the experiments over our bigger
schema TAX (17 attributes), just 67 rules have been used. Such
67 rules are generated starting from 29 seed rules provided by
an expert. The rules generation procedure takes a rule as input
and unfolds it based on transformation rules of Section III-B.

Note that, in respect to fixing rules, which are instance
based and then even thousands of rules may be necessary to
achieve a proper recall, in our case just few tens of rules are
enough. This indeed also simplifies the process of consistency
checking and implication.

Setting. The experiments were carried out on a i7-3770
machine with 8 3.40GHz CPUs. The operating system was
a 64bit Ubuntu 14.04. The test scripts were written in Python,
while the algorithms as well as the indices were implemented
in Java.

We performed experiments to measure the accuracy of the
repair, the accuracy of the annotations, and the efficiency of
our approach.

Uhttp://opendata.socrata.com/dataset/City-Of-Trenton-2012-Certified-Tax-
List/mxtj-vhhx

26

Repairing and annotation accuracy: For what concern the re-
pairing and annotations accuracy, for each of the two datasets
we measured how the precision and recall evolve with the
injection of different types of errors and at different rates. In
practice, starting from a noise rate of 10%, we increased the
ratio by a step of 10% until 40%. For each noise rate, we then
selected different typos-active domain rate from 0% (100% of
domain errors and 0% of typos errors) to 100% (0% of domain
errors and 100% of typos) again by intervals of 10%. For each
noise and typos-active domain rate, we then injected semantics
errors from 0% to 100% rates, with steps of 10%. We assume
that each tuple will be corrupted. Each experiment is computed
over 5 different folds, and the reported results were computed
as the average. For the accuracy of the repairing, Sherlock
rules were compared with fixing and editing rules. That is,
we provide a comparison with an automatic and a user-driven
approach both able to obtain data repairs with high precision.
High precision is indeed the same aim of Sherlock rules. For
the specific case of editing rules, in order to automate the
repair process, we have used the reference data to emulate the
interaction with a human. A similar approach has been also
used in [33].

Remark: (i) Sherlock rules subsume both fixing and editing
rules when string equality is used as a similarity measure.
(#¢) Constant CFDs can be simulated by editing rules. We can
therefore conclude that our comparison also include CFDs.

Fixing and editing rules do not provide annotations as output
of the repairing process. Hence we avoid comparing sRs with
editing and fixing rules in the second set of experiments since
the comparison would trivially favor the former.

Efficiency: For what concern the efficiency assessment, we
have first measured the performances of the naive and the
optimized algorithm over the SYN dataset using string equality
as similarity measure. For this set of experiments we have
generated different dataset sizes and evaluated the scalability
of the algorithms as the average over three runs. We have
then carried out a set of experiments for measuring the impact
of the k parameter in the index access cost. For this set of
experiments we have used the SYN dataset with 10k tuples.
The access cost was computed as the average cost of all the
index access during a repairing run.

B. Experiment Results
In the following we discuss the findings of our experiments.

1) Repairing Accuracy: In order to get better insights over
the accuracy of our repairing process, we have aggregated the
results of our experiments over three different perspectives:
(i) attribute-rate, (i¢) typo-rate, and (4i4) semantic-rate. In this
way we are able to understand which are the strong and the
week points of Sherlock rules. As a remark, recall that with
Sherlock rules we are aiming high-precision repairing, there-
fore we are expecting to obtain good precision comparable
with other approaches.

Varying the attribute-rate: The precision for datasets TAX and
SYN is depicted in Figs. 10(a) and 10(b) respectively. As can
be noticed, for both the datasets, with all the three (sR for
Sherlock rules, fR for fixing rules, and eR for editing rules)
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Figure 10. Repairing accuracy for TAX and SYN datasets from different aggregation perspective

dependable repairs (precision is always greater that 0.92) are
obtainable also when 40% of the attributes can be corrupted.
In addition, in the SYN dataset all the approaches are quite
independent from the number of noisy attributes. With the TAX
dataset instead, fR and eR slightly decrease in precision with
the increase of the noise rate, while sR precision increases.
This suggests us that sRs are robust even under high error-
rates. Note that in general, except for low noise rate in the
TAX dataset, sR is comparable with or even better than the
other two approaches.

The recall of the previous experiments is represented in
Figs. 10(c) and 10(d). Notice that for the TAX datasets we
have a decrease in the recall with the increase of the noise
in the attributes, while the recall for the synthetic dataset is
independent to the number of erroneous attributes, similarly
for the precision.

Varying the typo-rate: If we aggregate by typo-rate instead of
attribute-rate, we see from Figs. 10(e) and 10(f) that all the
approaches have an increase in precision with the increase of
the number of typos w.zt. active domain errors. This shows that
all such rules behave better with typos than with active domain
errors. Interestingly, precision instead slightly decreases in the
SYN dataset when we used Sherlock rules, although it always
remains greater than editing and fixing rules.

A similar trend can be seen in the recall charts of
Figs. 10(g) and 10(h). Even if Sherlock rules exploit similarity
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functions, the recall of Sherlock rules for the TAX dataset is
lower than editing and fixing rules which instead use exact
matching.

Varying the semantic rate: When the aggregation perspective
is moved over the semantic rate, we can see from Figs. 10(i)
and 10(j) that the two datasets behave similarly: with the
increase of the number of errors, the precision of sRs increases,
while the precision of editing and fixing rules decreases. This
is true especially for the SYN dataset where we have a drop
in precision for editing and fixing rules when the maximum
semantic-rate is reached. This is due to the fact that Sherlock
rules become more effective when semantic errors exist in
the records, since sRs are able to exploit the semantic fix
(transformation rule 1) to drive the repair over the entire tuple
with high accuracy. Although fixing rules are also able to detect
and repair such type of errors, they lose precision when many
of them are injected into records.

Figures 10(k) and 10(1) depict how the recall varies with
the semantic rate. The two datasets still behave similarly: both
of them have an initial increase in recall, and then a constant
decrease, with an important drop for the SYN dataset at high
semantic error rates. Different from the precision case, here
we have that all the approaches behave almost equivalently.

From this initial set of experiments we can draw the
following conclusions: () as also shown in [33] fixing and
editing rules behave in a similar way; (#¢) Sherlock rules
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are comparable with the aforementioned approaches both in
precision and recall. sRs behave better in general for the SYN
dataset, while eRs and fRs are slightly better in TAX.

Discussion: In fact, one can also consider editing rules used
as a simulation of constant CFDs: If the values of a tuple
matches the left hand side of a constant CFD ¢, the values
of the tuple correspond to the right hand side of ¢ will be
changed correspondingly. Hence, the results in Fig. 10 also
demonstrates that sRs outperform constant CFDs in accuracy.
Moreover, we defined 14 variable CFDs on the same attributes
applied by our sRs over the TAX data. To favour the repairing
algorithms for CFDs, we injected 10% errors that are only
typos. We ran NADEEF [16] to repair the data. The result
shows that the precision of sRs is 97%, which is much better
than 83.5% of CFD based repairs. A full comparison with
constraint based repairing is omitted due to space constraints.

2) Annotation Accuracy: Now that we have assessed that
with Sherlock rules we are able to provide accurate repairs, we
are going to describe the accuracy of the annotations of the
repaired instance, i.e., with which accuracy further approaches
can rely on our annotations. Also in this case, we provide
different levels of aggregation over our experiments.

Varying noise rate: The precision and the recall of the anno-
tations for datasets TAX and SYN are represented in Fig. 11.
In respect to the precision of the repair, for the annotations
we have that in both dataset the precision is higher, i.e., more
than 98%. This is because sRs are able to identify and annotate
correct values (i.e., proof positive values) in the dirty instance
with high precision.

For what concern the recall, annotations maintain the same
attitude of the repairing case, both in absolute values and in
curve behaviour.

Varying the typo and the semantic rate: For completeness we
have added the charts depicting how annotations behave vary-
ing the type and the semantic rate. We can see from Figs. 12
and 13 that both precision and recall behave as in the repair
case, although we obtain higher precision without losing recall.

Varying the attributes in the reference table: During the paper
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we have illustrated that sRs are quite flexible, even in the case
in which the reference table partially covers the information
stored in the input dirty instance. To empirically prove this, we
measured the recall of the annotations of Sherlock rules while
varying the number of attributes in the reference table. In this
experiment we have used the TAX dataset with an attribute
error rate of 30% and a typo / semantic rate of 50%. The
results can be seen in Fig. 14. As expected, we have that the
recall constantly increases with the increase of the number of
attributes in the reference table. In addition, the number of
proof negative values decreases up to almost disappear when
50% of the attributes are available. Intuitively, this is due to
the fact that more information is accessible, and hence the
wrong values, which before could just be annotated, can now
be repaired.

3) Efficiency: In this last set of experiment, we describe
the performance of our repairing process.

Figure 15(a) depicts a comparison in terms of scalability
of the naive and the optimized algorithm. Both axes are in
logarithm scale and they represent how the performance varies
in time over different instances size of the SYN dataset. For
both algorithms we have used edit distance with k£ = 0 for all
attributes, i.e., exact string matching. We used the FastSS index
in the optimized algorithm. As can be seen, the optimized
program scale linearly.

Since we expect different performance for each index and
for different settings of k&, in Fig. 15(b) we show what is the
trade-off of using a certain index or of varying k, in terms
of cost of index accesses. More precisely, we set at 1 the
cost of using the FastSS index with exact matching (i.e., k =
0), and we plotted the slow-down of using different indices
with different values of k, compared with the base case. In
other worlds, we plotted how slow are the other indices and k
configurations compared to the best case.

As expected, the cost of each access increases with the
increase of the k parameter up to 3 order of magnitude more
w.r.t. the case in which k£ = 0. For what concern instead the
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Figure 15. Performances of the implementation

index comparison, we have that with low levels of k, FastSS
perform better than the other two indices. At high k values,
instead, all the indices perform in a similar way.

Summary. We found the following from the above experi-
ments. (1) Sherlock rules can achieve high precision repair-
ing, comparable with the state-of-the-art (Section VI-B1). (2)
Sherlock rules can do annotations with high precision and good
recall when enough evidences are present (Section VI-B2). (3)
Sherlock rules are scalable since they work on each individual
tuple (Section VI-B3).

VII. CONCLUSION AND FUTURE WORK

In this paper we have proposed Sherlock rules. Sherlock
rules are able to repair and annotate dirty instances in a
deterministic fashion with high precision. Differently from
fixing rules this can be obtained without having to specify
hundreds or thousands of rules, but just exploiting external
reliable (but not complete) data sources. Differently from
editing rules, we are able to fix data in an automatic fashion,
without any user involvement. We have provided a thorough
analysis of Sherlock rules, both from a theoretical and practical
point of view. We have identified four fundamental problems.
Namely deciding whether a repair (i) terminates or (i) it
is deterministic; and if a set of rules (ii4) is consistent, or
(iv) implies another rule. We have proposed an efficient data
repairing algorithms including multiple optimization strategies
and data structures. Finally, we have experimentally verified
Sherlock rules both over synthetic and real-life data, and both
from an efficacy and efficiency perspective.

Many interesting features springing from Sherlock rules
deserve a further investigation. One problem is rule discovery.
In addition it would be interesting to research how different
reference tables (maybe with information at different level of
granularity) interact among themselves through Sherlock rules.
This could be useful in order to factor out some principle that
can be applied over heterogeneous data sources.
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